PULSE CROP ECONOMICS

COMPARISON TO OTHER CROPS & ROTATION ECONOMICS

April 14, 2011

Chad Lee
Business Development Officer
Montana Department of Agriculture
chlee@mt.gov
406.444.2402

Why is the developing pulse crop industry important to the Montana Department of Agriculture?

Why is this important to you?

Pulse crops appear to be a good opportunity for Montana's farmers:

- Competitive Economics
- Rotational Benefits
 - Boost in yield & quality of following cereal crops
 - Help break disease cycles
 - Help deal with insect problems (sawfly)
 - Change carbon-nitrogen ratio (improve soil health)
 - Weed Control
- Reduced fertilizer inputs
- Possibility of more intensive rotations
- Diversification: of production & marketing risks, buyers, markets
- Flexibility: grain, forage, cover crop

The role of fertilizer in the year-to-year comparisons:

ACREAGE TRENDS IN NORTHEAST MONTANA 1998 - 2009

Pulse Crop Impact on Fallow & Wheat Acres

Northeast Montana Dryland Fallow Acres - as a % of Active Dry Cropland

Valley County - % of Active Dry Cropland

Valley County Dry Cropland Change Since 1998 (acres)

Why is the developing pulse crop industry important to the Montana Department of Agriculture?

Opportunity for increased agricultural processing in Montana

- More Jobs
- More economic activity in our communities
 - Opportunity for spin-off businesses
 - Helps keep existing businesses open
 - Helps fight trend of declining rural populations
 - Diversification makes local economies more stable
- Better & more dependable prices: processing & competition create strong markets
- Allows us to ship products that are worth more
- Byproduct benefits local livestock feeding and dairy industries

PULSE CROP ECONOMICS

Approach: Comparison of Returns After Direct Costs

Revenue = Value of Crop + Crop Insurance Revenue

Government payments assumed not to change with crop selection

Direct Costs:

- Seed
- Herbicides
- Fungicides
- Insecticides
- Fertilizer replacement of NPK & S for yield harvested
- Crop Insurance
- Fuel & Lubrication for Field Operations
- Trucking from Farm to Delivery Point
- Operating Interest
- N Credit for Peas & Lentils value of 10 lbs N / acre

PULSE CROP ECONOMICS

DRYLAND PRODUCTION

AREA DRYLAND AVERAGE YIELDS: (2004 - 2008)

	Low	Ave	High
WW (bu/acre)	45.0	48.1	50.8
WW-Recrop (bu/acre)	38.7	40.5	42.2
SW (bu/acre)	19.6	28.6	34.1
SW-Recrop (bu/acre)	20.5	25.9	31.5
Barley (bu/acre)	28.7	35.8	42.1
Barley-Recrop (bu/acre)	29.0	33.3	42.9
Pea (bu/acre)	9.5	22.8	29.7
Lentil* (lb/acre)	636	979	1403
Chickpea** (lb/acre)	650	1,040	1,570

^{*} North Central / Central Regional Averages

^{**} Statewide Averages

YIELDS USED:

	Ave
WW (bu/acre)	48.1
WW-Recrop (bu/acre)	40.5
SW (bu/acre)	28.6
SW-Recrop (bu/acre)	25.9
Barley (bu/acre)	35.8
Barley-Recrop (bu/acre)	33.3
Pea (bu/acre)	22.8 / 25.0
Lentil (lb/acre) (979)	1000 / 1200 / 1000 / 1100
Chickpea (lb/acre) (1,040)	1,200 / 1,200 / 1,200 / 1,000
Canola (lb/acre)	975
Flax (bu/acre)	15.0
Safflower (lb/acre)	650
Mustard (lb/acre)	625
Camelina (lb/acre)	684
Dryland Alfalfa Hay (ton/acre)	1.25 (0.91 for 7 yr. stand)

Spring Wheat (14%)

\$8.50 / bu ?

Current Price: \$10.93

\$8.25 / bu ?

Current Price: \$9.41

Winter Wheat (Ord)

\$6.50 / bu ?

Current Price: \$7.09

Malt Barley

Durum

\$4.52 - \$6.00 / bu \$9.41 - \$12.50 / cwt

Current Price: \$5.28/bu \$11.00/cwt

Feed Barley

\$4.25 / bu \$8.85 / cwt?

Current Price: \$4.80/bu \$10.00/cwt

Peas

Green Cruiser-type (No. 1)

Med. Yellow (No. 1)

\$7.50/bu / \$8.25/bu \$12.50 - \$13.75 / cwt

Current Price: \$7.50/bu \$12.50/cwt

Current Price: \$7.25 /bu \$12.08/cwt

Feed

Statpub (Sask): \$4.83/bu \$8.05/cwt \$161/ton AB Feed Pea Benchmark: \$6.40/bu \$10.67/cwt \$213/ton

2/3 – 1/3 Breakeven Rule (economic value for peas replacing grain/meal):

- \$8.36/bu corn & \$399/ton soymeal = **\$9.96/bu** / **\$16.60/cwt** / **\$332/ton**
- \$4.30/bu barley & \$232/ton canola meal = \$5.39/bu / \$8.98/cwt / \$180/ton

Lentil

\$21.00 - \$25.75/cwt (Chad) – used in charts \$23.00 / cwt (NDSU)

Laird (Large Green)
No. 1

Current Price: \$37.32/cwt

Canadian Sept/Oct/Nov Offers: \$26 - \$29/cwt

Richlea (Medium Green) No. 1

Current Price: \$31.66/cwt

Canadian Sept/Oct/Nov Offers: \$24.25 - \$26.90/cwt

Eston (Small Green)
No. 1

Current Price: \$31.39/cwt

Canadian Sept/Oct/Nov Offers: \$24.25 - \$26.90/cwt

Current Price: \$21.42/cwt

Canadian Sept/Oct/Nov Offers: \$20.70 - \$23/cwt

Red No. 1

Chickpea

\$24.50 - \$32/cwt (Chad)

\$24.50 / cwt (NDSU)

Kabuli 9mm (No. 1)

Current Price: \$35.53/cwt

Canadian S/O/N Offers: \$32 – \$35.50/cwt

Frontier 7mm (No. 1)

Current Price: \$29.80/cwt

Canadian S/O/N Offers: \$26.65 – \$27.70/cwt

B-90 (No. 1)

Desi

Current Price: \$25.55/cwt (Canada)

Controlled by United Pulse in US: probably similar to higher than current price listed

Current Price: \$25.54/cwt

Canadian S/O/N Offers Desi: \$26.90 - \$27.95/cwt

Mustard	\$30/cwt +/- (\$35/cwt?) (Chad)
	\$23.80/cwt (NDSU)
	Current Price: \$31.00
Canola	\$23/cwt (Chad)
	\$27.50 / cwt (Nov 11 ICE Futures on 4/11/11)
	Current Price: \$26.60/cwt
Flax	\$13.50/bu / \$24.11/cwt (Chad)
	\$11.49/bu / \$20.52/cwt (NDSU)
	Current Price: \$14.07/bu / \$25.13/cwt
Safflower	\$26 - \$28 / cwt
	Current Price: ???
Camelina	\$15.00 / cwt

CROP COMPARISON Central Montana 2011 Estimate Return After Direct Costs (\$/acre)

CROP COMPARISON North Central Montana 2011 Estimate Return After Direct Costs (\$/acre)

CROP COMPARISON Northeast Montana 2011 Estimate Return After Direct Costs (\$/acre)

PULSE CROP ECONOMICS

ROTATION COMPARISONS

Approach: Comparison of Average Annual Returns After Direct Costs

Why compare rotations instead of individual crops?

Average annual returns are needed for <u>comparability</u>

- Rotations may vary for a variety of reasons and objectives
 - Cropping Intensity
 - Moisture & Weather Conditions
 - Integrated Pest / Disease Management / Soil Building Objectives
 - Income Diversification & Risk Management Decisions
 - Government Program Requirements (CSP)
 - Carbon Credit Trading Requirements
 - Workload
- Comparing rotations acknowledges that there are constraints to sequences of crops

Rotation Comparison Average Annual Return After Direct Costs Central Montana Dryland - 2011 Estimate

Rotation Comparison Average Annual Return After Direct Costs North Central Montana Dryland - 2011 Estimate

Rotation Comparison Average Annual Return After Direct Costs Northeast Montana Dryland - 2011 Estimate

PULSE CROP ECONOMICS

Estimated average returns of rotations did not incorporate rotational benefits:

- Yield Enhancement
- Quality Improvement

WHAT IF THEY DID?

Central Montana Dryland Crop Rotations 2011 Prices/Costs / Average Yields Average Return After Direct Costs (\$/acre)

- Return After Direct Costs Ignoring Rotational Benefit (\$/acre)
- Return After Direct Costs With Rotational Benefit (\$/acre)
- Return After Direct Costs With Rotational Benefit Optimistic (\$/acre)

WHERE ARE THE PULSE ACRES?

CENTRAL MONTANA: 2007 PEAS & LENTILS

CENTRAL MONTANA: 2009 PEAS & LENTILS

CENTRAL MONTANA: 2010 PEAS & LENTILS

CENTRAL MONTANA: 2010 PEAS & LENTILS

CENTRAL MONTANA: 2010 PEAS & LENTILS

Field Pea Planted Acres Montana 2009

Field Pea Planted Acres Montana 2010

Compiled by: Chet Hill, NDSU Extension Service

Lentils Planted Acres Montana 2009

Compiled by: Chet Hill, NDSU Extension Service

Lentils Planted Acres Montana 2010

Chickpeas Planted Acres Montana 2009

Chickpeas Planted Acres Montana 2010

Compiled by: Chet Hill, NDSU Extension Service

Pulse Crop Planted Acres Montana 2009

Compiled by: Chet Hill, NDSU Extension Service

2011 USDA NASS Projections:

PEA ACRES:	2009	2010	2011 (Projected)
MONTANA	240,000	220,000	215,000
NORTH DAKOTA	490,000	430,000	275,000
UNITED STATES	863,300	756,000	586,000

LENTIL ACRES:	2009	2010	2011 (Projected)
MONTANA	122,000	260,000	320,000
NORTH DAKOTA	165,000	265,000	275,000
UNITED STATES	415,300	658,000	710,000

CHICKPEA ACRES:	2009	2010	2011 (Projected)
MONTANA	2,300	6,300	18,000
NORTH DAKOTA	13,200	16,000	9,000
UNITED STATES	96,100	146,000	138,900

TRENDS DRIVING PULSE MARKETS

More Demand Driven than Supply Driven

From NDSU Pulse Crop Marketing Guide (2006):

- •Population Growth demand for protein / vegetable protein
- •Globalization trade + changes in land use elsewhere
- Weather Patterns
- Health Conscious Affluent Markets

Other:

- •Increased global meat consumption driving commodity markets
- •Currency Exchange Rates
 - Stronger Canadian & Australian Dollar makes US exports more competitive
- •In the future demand for ingredients to enhance food products or meet large niche markets: pulse flour, fractionated pulse protein, starch, fiber

GLOBAL PERSPECTIVE:

India: largest producer, consumer, importer of pulse crops

- Production: Over 50 million acres of pulse crops
 - about 3.7 million acres of lentils
 - 63% of pulses grown in the winter season
- Consumption: should be 22 million metric tons (to meet dietary recommendations)
 - Production from two harvests is about 16 million metric tons
 - Gap (recommended consumption vs. production) has doubled every decade in the last 30 years
 - In the last 10 years, the gap has averaged 5.3 million metric tons/yr
- Imports: Normally imports about 3 million metric tons

GLOBAL PERSPECTIVE:

Major Producers:

- India
- Canada
- Turkey
- United States
- Australia
- Ukraine
- France
- China
- Germany
- Russia
- Pakistan

GLOBAL PERSPECTIVE:

Major Exporters:

- Canada
- Turkey
- Australia
- United States
- Ukraine
- France

GLOBAL PERSPECTIVE:

Major Importers:

- India
- Bangladesh
- China
- Pakistan
- Sri Lanka
- North Africa Countries: Egypt, Algeria, Morocco
- Columbia
- Peru
- Mexico
- Spain and other European Countries
- Turkey (at times)

GLOBAL PULSE CALENDAR:

May – June: Turkish Harvest

June – Sept: Indian Monsoon Rains

Late July – Mid September: U.S. / Canada Harvest

October: Indian Kharif Crop Harvest

• mostly beans: pigeon peas, mung beans, urd beans, and other crops - any shortfalls in these results in substitution

November / December : Australian Crop Harvest

Late February - Early April: Indian Rabi Crop Harvest

Lent: South America / Latin America Increased in Pulse Consumption

HOW IS 2011 SHAPING UP?

- 2010 Indian Kharif Harvest normal to good
- 2010 Australian Harvest a promising crop in the east encountered lots of moisture, the west was in drought
- 2011 Indian Rabi Harvest lower production despite more acres
- 2011 Turkish Crop likely drop in production (competition for acres, dry)
- Large Canadian inventory of red lentils (low inventory of green lentils)
- Large Canadian inventory of peas is disappearing
- Canada likely to reduce lentil acreage by 20% (700,000 acres)
- North Dakota likely to see a drop in pulse acres
- Montana soil moisture situation is good
- Pulse prices probably will stay strong
- Favorable multiperil crop insurance insured prices

2011 seems to present an opportunity for Montana farmers to replace fallow acres with pulse crops, with moderate risk to 2012 soil moisture storage

DISCLAIMER

The economic returns presented are estimates, not fact.

Make estimates that are applicable to your:

- farm,
- yield history,
- growing conditions, and
- your perception of risk.

Be cautious about planting if herbicide residual is a risk

Consider your potential harvesting capacity when deciding how many acres to plant

To Discuss More, Contact:

Chad Lee Business Development Officer Montana Department of Agriculture chlee@mt.gov 406.444.2402

www.agr.mt.gov/business/cropandrotationtools.asp

